Statistical Analysis of a Communication System Based on the Periodic Nonlinear Fourier Transform

Conference Paper · January 2016
DOI: 10.1364/ACOFT.2016.ATH1C.4

4 authors:

Morteza Kamalian
Aston University
8 PUBLICATIONS 8 CITATIONS

Yaroslav Prylepskiy
Aston University
41 PUBLICATIONS 169 CITATIONS

S.k. Turitsyn
Aston University
599 PUBLICATIONS 7,077 CITATIONS

Son Le
Nokia Bell Labs
65 PUBLICATIONS 197 CITATIONS

Some of the authors of this publication are also working on these related projects:

Periodic nonlinear Fourier transform in Fibre-optic communication View project

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.
Statistical analysis of a communication system
based on the periodic nonlinear Fourier transform

Morteza Kamalian, Jaroslaw E. Prilepsky, Son Thai Le, and Sergei K. Turitsyn
Aston Institute of Photonic Technologies, Aston University, Birmingham, B4 7ET, UK
kamaliam@aston.ac.uk

Abstract: We analyse the statistical properties of the nonlinear spectrum in optical fiber influenced by ASE noise and show that the Gaussian distribution assumption for the effective noise in nonlinear Fourier domain is valid.

OCIS codes: (060.2330) fiber optics communications; (070.4340) Nonlinear optical signal processing

1. Introduction

One of the new methods recently employed for the nonlinearity mitigation in fiber-optic communication systems is the inverse scattering transform (IST), also known as the nonlinear Fourier transform (NFT) [1, 2]. NFT (or IST) is the method providing analytical solutions of integrable evolutionary equations. In particular, it is applicable to the nonlinear Schrödinger equation (NLSE),

\[iq_t - \frac{\beta_2}{2} q_{tt} + \gamma |q|^2 q = \nu \]

as the master model governing the light envelope, \(q(t,z) \), evolution in the fiber where \(\nu \) is the ASE noise. Similar to the Fourier transform, the NFT transfers the NLSE into another space, decomposing the time-domain waveform into the so-called nonlinear spectrum (NS). In this paradigm, instead of solving the NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

To apply IST in solving NLSE, one has to find the solution of an associated differential equation, Zakharov-Shabat system (ZSS) in which the solution to the NLSE acts as a potential and the eigenvalues of the system, \(\lambda \), remain invariant along the evolution direction, \(z \) [2]. IST decomposes the solution into some nonlinear modes, the most well known form of which are famous solitons. Not only the NS can visualize some hidden characteristics of the solution of the NLSE, but it can also be used to convey data from transmitter to receiver due to the invariance of some of its components (eigenvalues). Since all communication systems suffer from random perturbations either coming from amplifiers, ASE, or emerging due to the imperfections of the receiver, it is of great interest to analyse the stochastic characteristics of the NS under the action of noise influence. The discrete components of NS represent the solitonic solutions of the NLSE, and their statistical behavior is well studied: A famous example is the Gordon-Haus effects describing the soliton-noise beating resulting in the random walks (jitters) of the soliton parameters [3].

2. Signal construction

There is still a lack of an efficient numerical method to construct signal from an arbitrary main spectrum. Thus, to study the stochastic behavior of the main spectrum we chose a more simple two-phase signal in which we can easily set a specific eigenvalue in the main spectrum and construct the resulting signal [5]. The signal is given by the expression

\[q(t,z) = A \cosh(\phi z - i\sigma) + B \cos(\xi t - \alpha) \cosh \phi z + B \cos(\xi t - \alpha) e^{iNz}, \]

where all parameters are calculated according to the chosen purely imaginary eigenvalue \(\lambda_1 \) (see [4,5] for more details).
3. Simulation results

We send our signal into a 1000 Km fiber with $\beta_2 = -21.67 \text{ps}^2/\text{km}$, $\gamma = 1.27 \text{W}^{-1}\text{km}^{-1}$, assuming ideal distributed Raman amplification (resulting in the distributed noise) to overcome loss of $\alpha \approx 0.2 \text{ dB/km}$. We choose the main spectrum points values $\lambda_1 = 0.9i$ and $\lambda_2 = 1.1i$, and calculate the histogram of the imaginary and real part of the received points. The empirical conditional PDFs of displacement of the received eigenvalues on the transmitted one is shown in Fig. 1 for λ_1 and λ_2; the number of samples in these plots was $N = 522$. In the insets of these figures we also depicted the received main spectrum. It is clear from these figures that the received eigenvalues are distributed in a larger area for the point having a bigger imaginary part. This occurred because of the dependency of the numerical method that we used to calculate the main spectrum (the Ablowitz-Ladik method, see [2]) on the imaginary part of the point. Since we do not have any analytical information about the distribution of λ, a general nonparametric representation is fitted to our data with a smoothing kernel of the normal type and a chosen bandwidth in a way that it can capture the changes in the histogram. We compare different known PDFs with this nonparametric one and find the one with the least difference. The PDF which fits the best to the kernel based estimation is a Normal distribution. In a communication system in which data is drawn from a one dimensional constellation along the imaginary axis in a confined area, the most problematic points are the largest ones with the largest span. Thus we can calculate a lower bound for the error in such a system by assuming a Normal distribution with estimated parameters for two largest points in a constellation with size $K = 32$. In Fig. 1 (c) we depict the bit error rate (BER) calculated by Gaussian assumption analytically and the BER obtained by counting the mismatches between the transmitted and received symbol streams against the number of samples. As is evident from Fig. 1 (c), the Normal distribution assumption is valid since two curves match well. This gives rise to the idea of using pilots to equalize the system in which, thanks to the time invariance of the optical fiber link, one can estimate the deterministic distortions and compensate it at the receiver.

4. Conclusion

After constructing a signal with the desired main spectrum, we get the empirical PDF of the received eigenvalues by sending many symbols into a fiber link of length 1000 Km. Based on the PDFs obtained, we calculate the BER and compare it with the BER coming from directly counting the mismatches between transmitted and received symbols. These simulation results show the eligibility of assuming Gaussian distribution for noise in nonlinear Fourier domain. This work was supported by the UK EPSRC Programme Grant UNLOC EP/J017582/1.

References